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Abstract The problem of combined convection from vertical surfaces in a porous medium
saturated with power-law type non-Newtonmian fluids along a non-isothermal vertical plate s
investigated. The transformed conservation laws were solved numerically for the case of variable
surface heat flux conditions. Results for the details of the velocity and temperature fields as well as
the Nusselt number have been presented.

Nomenclature
d = particle diameter 8 = coefficient of thermal expansion
f = dimensionless stream function n = dimensionless distance
g = acceleration due to gravity 0 = dimensionless temperature
k = permeability coefficient of the porous v = kinematics viscosity
medium 1 = dynamic viscosity
K = thermal conductivity p = density
n = viscosity index € = porosity
Nu = Nusselt number T» = wall shear stress
Pe = Peclet number X = mixed convection nonsimilar
Ra = Rayleigh number parameter
T = temperature P = stream function
u, v = velocity components in x and y
directions Subscripts
x, v = axial and normal coordinates w = surface conditions
« = thermal diffusivity oo = free stream conditions
Introduction

The study of combined convection boundary layer flow along a vertical surface
embedded in fluid-saturated porous media has received considerable interest
recently. The interest in such studies was motivated by numerous thermal
engineering applications in several areas such as geothermal engineering, thermal
insulation systems, petroleum recovery, filtration processes, packed bed reactors,
sensible heat storage beds, ceramic processing and ground water pollution.
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Similarity solutions for free convective heat transfer from a vertical plate
in a fluid-saturated porous media were obtained by Cheng and Minkowycz
(1977), Gorla and co-workers (Gorla and Zinalabedini, 1987; Gorla and
Tornabene, 1988) developed a procedure to investigate the nonsimilar
boundary layer problem of free convection from a vertical plate embedded in
a porous medium with an arbitrarily varying surface temperature or heat
flux. The problem of mixed convection from surfaces embedded in porous
media was studied by Minkowycz et al. (1985) as well as Ranganathan and
Viskanta (1984). Hsieh et al. (1993) presented nonsimilar solutions for mixed
convection in porous media. Nakayama and Pop (1985) presented similarity
solutions for the free, forced and combined convection. Kumari and Gorla
(1997) examined the combined convection along a non-isothermal vertical
plate in a porous medium. All these studies were concerned with Newtonian
fluid flows. A number of industrially important fluids, including fossil fuels
which may saturate underground beds, display non-Newtonian behavior.
Non-Newtonian fluids exhibit a nonlinear relationship between shear stress
and shear rate.

Chen and Chen (1988) presented similarity solutions for free convection of
non-Newtonian fluids over vertical surfaces in porous media. Nakayama and
Koyama (1991) studied the natural convection over a non-isothermal body of
arbitrary shape embedded in a porous medium.

The present work has been undertaken in order to analyze the problem of
nonsimilar mixed convection from a vertical non-isothermal flat plate
embedded in non-Newtonian fluid saturated porous media. The boundary
condition of variable surface temperature is treated in this paper. We have
taken into account the presence of internal heat generation/absorption. The
power law model of Ostwald-de-Waele, which is adequate for many non-
Newtonian fluids, will be considered here. The transformed boundary layer
equations are solved using a finite difference method. The numerical results for
the velocity and temperature fields are obtained.

Analysis

Let us consider mixed convection from a heated vertical plate in a non-
Newtonian fluid-saturated porous medium. The surface of the plate is
maintained at a heat flux g,,(x). The flow velocity and the pores of the porous
medium are assumed to be small and therefore Darcy’s model is assumed to be
valid. The governing equations under Boussinesq and boundary layer
approximation may be written as:
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In the above equations, # and v are the Darcian velocity components in x and y
directions; 7" the temperature; # the viscosity index; p the density; u the
viscosity; 3 the volumetric coefficient of expansion; k the permeability of the
porous medium and o the equivalent thermal diffusivity of the porous
medium.

Non-Newtonian fluids generally exhibit a nonlinear relation between shear
stress and shear rate. These fluids may be classified as inelastic and
viscoelastic. The inelastic fluids may be subdivided as time-dependent fluids
and time-independent fluids. The time-dependent fluids, in turn, are subdivided
into two groups: thixotropic and rheopectic. The time-independent fluids can be
subdivided into four groups: pseudoplastic, dilatant, Bingham plastic and
pseudoplastic with yield stress.

Inelastic time-independent non-Newtonian fluids have received the greatest
attention from rheologists, which has resulted in the development of a number
of equations or models proposed to represent their flow behavior. The Ostwald-
de-Waele power-law model represents several inelastic time-independent non-
Newtonian fluids of practical interest and therefore has been used in this paper.
When n < 1, the model describes pseudoplastic behavior, whereas n > 1
represents dilatant behavior.

Christopher and Middleman (1965) were the first to propose the form of
Darcy law applicable to power-law fluids. In essence, the modified Darcy law as
obtained by them can be written in vector notation:

n—1
rene (27,

where p is the consistency of the power-law fluid and % is the modified
permeability.

For the power law model of Ostwald-de-Waele, Christopher and Middleman
(1965) and Dharmadhikari and Kale (1985) proposed the following relationships
for the permeability:

b % (374%6 1>" [3(1€i E)rﬂ n

O de2 n+1 6141 16 3(107-3)/(102-+11)
2[8(1 a] (101/1—3) (75)

In the above equation, d is the particle diameter and e the porosity.
The appropriate boundary conditions are given by

y=0,v=0,q, =ax’
y—ooo:u=Usx,T="T
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HFF where « and ) are constants. We note that A = 0 corresponds to uniform heat
10.2 flux wall conditions.
’ The continuity equation is automatically satisfied by defining a stream
function ¢ (x, y) such that

u:%andu:—% (6)
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Proceeding with the analysis, we define the following transformations:
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Substituting the expression in (7) into (2) and (3), the transformed governing
equations may be written as:
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Primes in the above equations denote partial differentiation with respect to 7.
We note that ¥ = 0 and x = 1 correspond to pure free and forced convection
cases respectively.

For practical applications, it is usually the velocity components, friction
factor and Nusselt number that are of interest. These are given by

V=
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Numerical scheme
The numerical scheme to solve equations (8) and (9) adopted here is based on a
combination of the following concepts:

(@)

The boundary condition for = oo is replaced by
f/(X7 Nmax) = X2a O(X; Mmax) = 0 (12)

where 7.« 1S a sufficiently large value of 7 at which the boundary
conditions are satisfied. In the present work, a value of 7., = 25 was
checked to be sufficient for free stream behavior.

The two-dimensional domain of interest (x,n), is discretized with an
equispaced mesh in the y direction and another equispaced mesh in the
n-direction.

The partial derivatives with respect to y and 7 are evaluated by the central
difference approximation. The central difference approximation for the
partial derivatives with respect to x vanish when x = 0 and x = 1 which
correspond to the first and the last mesh points on the y axis, or free and
forced convection respectively.

Two iteration loops based on the successive substitution are used
because of the nonlinearity of the equations.

In each inner iteration loop, the value of x is fixed while each of the
equations (7) and (8) is solved as a linear second order boundary value
problem of ODE on the n-domain. The inner iteration is continued until

Combined

convection

167




HFF the nonlinear solution converges with a criterion of 107 in all cases for
10,2 fixed value of x.
(f) In the outer iteration loop, the value of x is advanced from O to 1. The
derivatives with respect to x are updated after every outer iteration step.
More details of the method may be obtained from Pop and Gorla (1991).
168 The results are affected by the number of mesh points in both directions. To
obtain accurate results, a mesh sensitivity study was performed. After some
trials, in the 7-direction 190 mesh points were chosen whereas in the X
direction, 51 mesh points were used. The tolerance for convergence was 10.
Increasing the mesh points to a larger value led to identical results.
Results and discussion
Numerical results for the Nusselt number are presented in Tables I-VI. To
assess the accuracy of the present results, we have chosen a comparison of
our results with those of Hsieh et al. (1993) for the case of Newtonian fluid,
namely, » = 1, H = 0. It may be noted that the agreement between our results
and the literature value is within 2-5 percent difference. We therefore
conclude that our results are very accurate. The results indicate that the
heat generation/absorption has considerable influence on the heat transfer
rate (Nusselt number). Figures 1-4 display the variation of the local heat
Present results Hsieh et al.
X A =00 A=05 A= 00 A=05
1.0 0.56414 0.88601 0.5642 0.8862
0.9 0.51028 0.80144 0.5098 0.8014
0.8 0.46201 0.72637 0.4603 0.7259
0.7 0.42148 0.66417 0.4174 0.6629
0.6 0.39062 0.61883 0.3832 0.6160
0.5 0.37207 0.59411 0.3603 0.5890
0.4 0.36569 0.59202 0.3506 0.5844
Table 1. 0.3 0.37165 0.61195 0.3550 0.6026
Comparison of values 0.2 0.38913 0.65136 0.3732 0.6419
of —6'(x,0) for 0.1 0.41698 0.70701 0.4035 0.6991
7=1.0 and H=0.0 0.0 0.45383 0.77584 0.4438 0.7704
H X A=00 A=05 A=1.0 A=20
0.0 0.0 0.40692 0.85862 0.94949 1.27807
04 0.5 0.49318 0.71224 0.88105 1.14799
1.0 0.83032 1.08397 1.29155 1.63143
0.0 0.5 0.46968 0.86445 1.01902 1.36897
Table II. 1.0 0.56414 0.93070 1.12812 1.50420
Values of —6'(x,0) for 04 0.5 0.27525 0.55150 0.75044 1.04899
n =205 1.0 0.15871 0.63898 0.93922 1.36612




transfer rate (Nusselt number) with  for the values of #, H and \. As the Combined
viscosity index increases, we notice that the Nusselt number tends to convection
decrease. This indicates that pseudoplastic (z < 1) fluids are associated
with higher heat transfer rates when compared to dilatant (% > 1) fluids. As
A increases, the Nusselt number increases, thus indicating that
H X A=00 A=05 A=10 A=20 169
0.0 0.0 0.43927 0.76178 0.98489 1.32547
-0.4 0.5 0.55656 0.85643 1.07731 1.42058
1.0 0.83032 1.08397 1.29155 1.63143
0.0 0.5 0.39326 0.63694 0.81443 1.09045
1.0 0.56414 0.88601 1.12796 1.50391 Table III.
0.4 0.5 0.37196 0.72019 0.96653 1.33689 Values of —6'(x, 0) for
10 0.15871 063898 093922 1.36612 n=08
H X A=00 A=05 A=10 A=20
0.0 0.0 0.45383 0.77584 1.00426 1.35033
-04 0.5 0.47618 0.67215 0.82569 1.07030
1.0 0.83032 1.08397 1.29155 1.63143
0.0 0.5 0.37207 0.59411 0.75854 1.01203
1.0 0.56414 0.88601 1.12812 1.50404 Table 1V.
04 0.5 0.24693 0.50252 0.68767 0.96549 Values of —6'(x, 0) for
1.0 0.15871 0.63898 0.93922 1.36612 n=10
H X A=00 A=05 A=10 A=20
0.0 0.0 0.48134 0.80415 1.03548 1.39064
0.4 0.5 0.45628 0.62424 0.75790 0.97593
1.0 0.83032 1.08397 1.29155 1.63143
0.0 0.5 0.34682 0.54268 0.68737 0.91615
1.0 0.56414 0.88601 1.12796 1.50391 Table V.
0.4 05 0.21210 0.44229 0.61042 0.86280 Values of —6'(x,0) for
1.0 0.15871 0.63898 0.93922 1.36612 n=15
H X A=00 A=05 A=10 A=20
0.0 0.0 0.50698 0.82209 1.05505 1.41437
-04 0.5 0.44742 0.60252 0.72836 0.93248
1.0 0.83032 1.08397 1.29155 1.63143
0.0 0.5 0.36003 0.52496 0.65829 0.87287
1.0 0.56666 0.88638 1.12812 1.50404 Table VI.
04 0.5 0.19593 0.41425 0.57439 0.81494 Values of —6(x, 0)
1.0 0.15871 0.63898 0.93922 1.36612 for n = 2.0
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Figure 3.
Local Nusselt number
versus x with A = 1.0

Figure 4.
Local Nusselt number
versus x with A = 1.5
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Figure 5.
Velocity profiles with
A=05and 7 =08
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Figure 8.
Temperature profiles
with y =0.5and 7 = 0.8
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Figure 9.
Velocity profiles with
A=05andn =10

Figure 10.
Temperature profiles
with A =0.5and# = 1.0
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Figure 11.
Velocity profiles with
x=05andn =10

Figure 12.
Temperature profiles
with y =0.5and# = 1.0
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nonisothermal surfaces are associated with higher heat transfer rates than
isothermal surfaces. Also, the heat generation increases, the Nusselt number
decreases.

Figures 5-16 display the results for the velocity and temperature profiles. As
the heat generation term increases, the velocity and temperature profiles
broaden and become more uniform.

Concluding remarks

In this paper, we have presented an analysis for the problem of mixed
convection from a vertical surface with variable wall heat flux and embedded
in a porous medium saturated with Ostwald de-Waele type non-Newtonian
fluid. The nonsimilar parameter x is introduced. Numerical results are
presented for the velocity and temperature profiles as well as Nusselt number
variation with the combined convection parameter x. The influence of internal
heat generation on the surface heat transfer is examined.
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